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Pairwise Multiple Comparisons In
Single Group Repeated Measures Analysis

Introduction

The main purpose of this research was to provide educational researchers with a
choice of pairwise multiple comparison procedures (P-MCPs) to use with single
group repeated measures data. This was done through two Monte Carlo (MC)
studies. The first MC study! was exploratory and was based on variance-
covariance matrices that were created so as to conform to different sphericity
values. Power in this study was examined for a fixed set of mean differences.
The second MC study was based on the results of the first study, and used
variance-covariance matrices found in one-hundred real repeated measures data
sets. Power in the second study was examined based on the mean differences
found in these real data.

Study 1

Objectives

The first objective in study 1 was to examine P-MCPs that have been shown to
control different types of Type 2 error and Type 1 familywise error under both no
violations and violations of assumptions in other designs. A second objective,
was to recommend one or more of the P-MCPs to educational researchers based
on ease of use. This study expanded the previous work done in this area (e.g.,
Maxwell (1980), Boik (1981), Alberton and Hochberg (1984), Keselman,
Keselman and Shaffer (1991), Keselman (1994), Keselman and Lix (1995)) by:

(a) using Bradley’s(1978) stringent level of robustness to examine the P-
MCPs empirical rate of Type I error (&) as compared with the nominal
familywise level of significance (o);

(b) expanding the range of sphericity (as measured by €) considered to
more realistically cover those values found in practice (Green and
Barcikowski, 1992);

() comparing per-pair power among the P-MCPs by finding the number
of units (n’s) necessary to reach per-pair power of .80.

3

E MC ' The first study was presented as a paper at the annual meeting of the Mid-Western Educational Research
eI A gsociation, Chicago, October, 1996.
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Perspectives

P-MCPs Studied

A great deal of work has been done recently in the development of new and
competing P-MCPs (Seaman, Levin, and Serlin, 1991). Many of these new P-
MCPs have been adapted for use in split-plot repeated measures designs in
papers written by the Keselmans and their colleagues (Keselman, Keselman and
Shaffer (1991), Keselman Carriere and Lix (1993), Keselman (1994), Keselman
and Lix (1995)). In this paper the following P-MCPs, described in detail by
Maxwell (1980), Keselman (1994), and Keselman and Lix (1995) were examined
for use with single group repeated measures data: 1) Tukey’s T procedure (also
known as the Studentized range procedure) (Tukey, 1953), 2) A modification of
Tukey’s T suggested by Keppel (1973) and studied by Maxwell (1980), 3) Dunn-
Bonferroni controlled t-tests (DB), 4) Shaffer’s (1986) sequentially rejective
Bonferroni procedure (SB), 5) Hayter’s (1986) two-stage modification of Fisher’s
Least Significant Difference test (FH), 6) A modified range procedure that
combines the work of Shaffer(1979, 1986), Ryan(1960) and Welsch (1977) (SRW),
7) A multiple range procedure based on Ryan-Welsch critical values (MRW), 8)
Peritz’s (1970) procedure (P), and 9) Welsch’s (1977) step-up procedure (W).

These P-MCPs were selected for study because they were found to be at least
partially successful in controlling different types of Type 2 error and Type 1
familywise error in previous studies. The first three procedures were used by
Maxwell (1980) in his study of this problem, and procedures 4 through 8 were
found by Keselman and Lix (1995) to be robust to violations of normality,
multisample sphericity and heterogeneity of variance-covariance matrices with
unequal cell sizes in split-plot designs using Bradley’s liberal criterion.
Keselman and Lix (1995) examined procedures 4 through 8 using the Welch-
James-Johansen (WJJ) overall multivariate test (Johansen, 1980) with
Satterthwaite (1941) adjusted degrees of freedom (SDF) as described by
Keselman, Keselman and Shaffer (1991). They also modified the range
procedures (SRW, MRW, P) by using a process described by Duncan (1957).
Keselman (1994) recommended the Welsh step-up procedure with SDF degrees of
freedom for use with split-plot repeated measures designs over twenty-seven
other methods that he studied. Therefore, the first three procedures are
generally familiar to most educational researchers and they provided check
points with Maxwell's study. The second six procedures were found to be
effective under more severe violations of assumptions, and were expected to
perform well in this study of a simpler design.

The T, K, DB, and W P-MCPs were studied without an overall test. The T, K,
DB P-MCPs are called simultaneous procedures because they use a single critical
value to test all pairwise differences. The SB, FH, SRW, MRW, P and W are
referred to as stepwise or sequential procedures because they test stages of

O hypotheses in a stepwise fashion, usually using a different critical value at each
stage. SB, FH, SRW, MRW, and P were to be examined after first being

4
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preceded by the WJJ test. The FH procedure was to be studied after being
preceded by Keppel's g-statistic based on the Studentized-range. The SRW,
MRW, and P range procedures were to be conducted with the modification
described by Duncan (1957).

Background Equations

The P-MCPs examined in this study may be better understood through the
following set of equations. In the following equations we are comparing pairs of
means (i,j) from a set of J means where i,j =1, 2, ..,dandi=#j. Then, S2is the
mean square error (i.e., the mean square within, or residual) of the analysis of
variance considered, and SiZ and S;2 are the variances of treatments or measures
i and j, with sample sizes ni and n;, respectively. When all treatments or
measures have an equal number of units, the treatment or measure sample size
is denoted by n. The general form of these equations is found in Equation 1.

Equation 1: General Form.

o> .. *
TS; > GV, *Con (D
The term TSij is the calculated test statistic in the form of a t statistic for various

situations, and the term CVij,,v is a critical value with familywise error of o
and error degrees of freedom v. The term Con is a constant which allows the

equation to be valid. When the calculated test statistic TS;jj is greater than or

equal to CVij,o,v times Con, mean i is said to differ significantly from mean j.

.Equation 2: Equal n, Homogeneous Variances.

— (Y AY4 2 1/2 *
TSy = (% - ) 1 8%/ P2 2 OV CON 2)
The typical example for this equation 1s Tukey’s HSD used to compare all pairs

of means in a one-way ANOVA with J treatments. Then, CVij,o,v 1s the

Studentized Range Statistic and Con = 1.0. For example, in a one-way ANOVA
with J = 5, n = 9 units (e.g., subjects) per treatment, and o =.05, we have that

CVij,.05,40 = Gg,j,v = 4.05,5,40 = 4.04 for all paired comparisons.

N
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Equation 3: Unequal n, Homogeneous Variances.
TS = (¥, - Yy / (S% / n, + 82/ nj)l/2 > CVj; 4y * CON (3)
Equation 4: Unequal n, Heterogeneous Variances.
TS = (% - Yy / (82 I n; + S_f /n)V2 2 OV, *CON (@)
Equation 5: Equal n, Heterogeneous Variances, correlated measures.
TS = (% - ¥) /(7 + 87 - 28 / mV2 2 €V o ¥ CON  (5)

Where S;; is the covariance between measures i and j and for single group
repeated measures designs v is usually equal to n-1.

Equation 5 may be used to illustrate all of the P-MCPs considered in this study,
except the T procedure which uses Equation 2. This can be done with the
assistance of Table 1 which provides information on the test statistics and how
their levels of significance and “steps between means” degrees of freedom are
determined in order to control familywise error rate. Familywise error (FWE) is
the probability of making at least one Type I error when testing a family of
hypotheses.

An example of where Equation 5 might be used is in a single group repeated
measures analysis with J = 7 measures on n = 25 subjects. Maxwell (1980)
recommended the Dunn-Bonferroni approach to determine which pairs of means
differed. Using the Dunn-Bonferroni approach, and the aid of Equation 5 and

Table 1, we have that CVij,y,v is student’s t-statistic with o’ = 20/(J*(J-1)) =

00238 and v = n-1 = 24 degrees of freedom. Then, CVijj, o5,24 = t.00238,24 =
3.396 and Con = 1.0 for all paired comparisons.

Method

Design characteristics. The complexity and number of conditions to be
compared necessitated a Monte Carlo study. In order to investigate the Type 1
and Type 2 error rates the following characteristics of the single group design
were manipulated: (1) the number of repeated measures (J = 3, 4, 5, 6, 8, 10), (2)
the value of sphericity (at J = 3 € =.51, .75, and 1.0; for each other J four values
of € were examined, ¢ = .50, .75, and 1.0 plus a value near the minimum for ¢,

73
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i.e.,forJ=4,s=.40;J=5,s=.30;J=6,s= 30;J=8,6=.20;d = 10, € = .20;),
and (3) the shape of the population (normal, nonnormal with skewness = 1.75,
and kurtosis = 3.75). The variance-covariance matrices for each value of
sphericity were generated using an algorithm developed by Cornell, Young and
Bratcher (1990). Probabilities and upper quantiles for the Studentized Range
statistic (q) were computed through an algorithm developed by Lund and Lund
(1983). The number of repeated measures and the values of sphericity were
based on a study by Green and Barcikowski (1992) and the shape of the
nonnormal distribution was close to that chosen by Keselman (1994) (skewness =
1.633, and kurtosis = 4.0), based on an investigation by Micceri(1989).

Data generation. A FORTRAN program was used to generate the repeated
measures normal data following procedures described by Barcikowski (1980).
Each covariance matrix (C) was factored into upper and lower triangular
matrices L and L using the Cholesky (square root factoring) decomposition of R,
ie., R=LL. Repeated measures for a unit (e.g., subject) were arrived at using a
procedure described by Collier, Baker, Mandeville and Hayes (1967, pp. 343-344)
where a vector of J scores, z, was generated that were independently and
normally distributed with a mean of zero and a standard deviation of one; the
desired vector of J scores x was found from x = Lz. Each of the J measures in X,
xj, was then transformed to a score, yj, from a selected population with a mean
() using yj = Xj + K. Nonnormal data were generated using procedures
described by Fleishman (1978) and Vale and Maurelli (1983). Given a .05 level
of significance, each condition was replicated 5,000 times for both power and
Type 1 error rates.

Criterion for an acceptable familywise error rate. Bradley’s (1978)
stringent criterion was used to judge the bounds for estimates of an acceptable
familywise error rate because past research, i.e., Seaman, Levin and Serlin
(1991) and Keselman and Lix (1995) had indicated the potential for one or more
of these P-MCPs to meet this criterion. Also, for reasons to be described when
sample size is discussed, we were not as concerned with a P-MCP whose
familywise o was less than Bradley’s lower bound. Bradley’s stringent criterion
is to be considered robust when a P-MCPs empirical rate of Type 1 error (d)is
contained in the interval o + 0.2 a.. For o = .05, a P-MCP was considered robust
if it fell in the interval .04 < & < .06.

P-MCP power. Per-pair power (the probability that a true difference between
two specified means will be detected) was investigated by setting two means at .3
and -.3 with the other means set at zero. Sample size (n) for each case was then
found such that power was as close to .80 as possible without going below .80
(i.e., at n-1 power was less than .80). The notation n~.80 is used here to denote
the latter sample size and ~.80 to denote the power for this sample size. Per-pair
power was investigated because of results and reasoning given by Seaman, Levin
and Serlin (1991) for fixed effects one-way designs. All pairs power (the
probability that all true pairwise mean differences will be detected) was found by

' Seaman et al. (1991) to be highly correlated with per-pair power (r > .90), and

any-pair power (the probability that at least one true pairwise mean difference
)
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Table 1
Each Pairwise Multiple Comparison Procedure Used in Study 1, Its
Abbreviation, Type I Error Similarity, Test Statistic, Critical Value o,
and q Statistic Degrees of Freedom for Steps Between Means
Letter Typel Test Critical Value
Test ID Letter® Statisticd o pfif
Simultaneous Tests: No Omnibus Test
(1) Tukey? T a . q CT® J8
() Keppel? K b q CT J
(3) Dunn- DB c t 20/(J(J-1)) _
Bonferroni
Stepwise Tests: Preceded By Omnibus Testh
(4) Schaffer- SB d t a/xl _
Bonferroni
(5) Fisher-Hayter FH d q CT J-1
(6) Schaffer-Ryan ~ SRW  d q Tukey-Welsch)  etc ¥
-Welsch
(7) Multiple Range =~ MRW d q Tukey-Welschj ete.]
Ryan-Welsch
(8) Peritz P d q Tukey-Welsch ™ etc.]
Stepwise Test: No Omnibus Test
(9) Welsch w e w CT ete.l

Note. When the Studentized Range Statistic, g, is the critical value, CON = (2)-12 in Equation 5.
When Student’s ¢ or Welsch’s w are the critical values, CON=1.0.
aUses Equation 2 with pooled error term and degrees of freedom for error,
v=(n-1){J - 1). bCalled SEP1 by Maxwell (1980) to indicate use of Equation 5 with CVij,v = qgd.n-t.
Maxwell (1980) attributed this testing procedure to Keppel (1973). <Tests with the same letter
have the same Type I error based on their first test. dThe test statistics are the Studentized Range
statistic g, Student’s ¢ statistic, and Welsch’s w statistic. eCT (controlled by testing) indicates that
the familywise level of significance (o) is controlled by the testing process and does not have to be
modified by the user. fDf1 is the between degrees of freedom for the g and w statistics based on the
number of means or number of steps between means. &J is the number of repeated measures. "The
possible omnibus tests considered here were: (1) Hotelling’s T2, (2) the Greenhouse-Geisser
adjusted F test, (3) The Welch-J ames-Johansen multivariate test statistic, (4) the Keppel
Studentized Range Test. iValues for x are tabled in Schaffer (1986). iThe level of significance used
at each step is found as o’ =ap = 1-(1-)P¥ (2 <p < J-2), a1 = ag = a this and the testing process
control the familywise error rate to be a. kFollowing the overall test the next two tests of means
separated by J and J-1 steps are tested using Df1 = J-1 with an additional 1 subtracted from the
Df1 from a previous step at the J-2 and subsequent steps. IDfl = J at the first step and 1is
subtracted from the Dfl from a previous step at the J-1 and subsequent steps. ™The Peritz

o procedure makes use of the Tukey-Welsch and Newman-Keuls stepwise procedures as described by

EMC Hochberg and Tamhane (1987, pp.120-124).

IText Provided by ERIC
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will be detected) was found to differ comparatively little among procedures,
generally centering around the theoretical omnibus-test powers (p. 581).

P-MCP sample size. We found the sample size necessary for per-pair power to
be ~.80 because, based on the results of Keselman and Lix (1995), we expected
these n’s to differ by only a few units across P-MCPs. This would be an
important finding if a P-MCP failed to meet Bradley’s stringent criterion only at
its lower bound, but could reach power of ~.80 with only one or two more units
than the n~.80 needed for a P-MCP that failed to reach Bradley’s criterion at the
upper bound or the n~.80 needed for a P-MCP that was much more difficult to
calculate. ‘

Results
Type | Error

As a check on our procedures, we replicated Maxwell’'s (1980) results for WSD,
Dunn-Bonferroni, and Keppel (SEP1). We found that our results (not shown
here) were consistent with Maxwell's to within & +.005. Our results when we

" tested the full null hypothesis (i.e., that all of the means for a given single group
repeated measures design were equal) are presented in Table 2 for Wilks’s
overall multivariate test, WJJ, T, K, W, and DB. We included Wilks’s tests as a
further check on our process, because it should have found (and did find)
empirical error rates that were within Bradley’s stringent criteria.

Welch-James-Johansen. The results for the WJdJ test indicated that with a
sample size of fifteen units, the &’s became too liberal (i.e., & > .06) when the
ratio of number of units to the number of measures became less than or equal to
3to 1, i.e., n/J < 3. This result is similar to those found by Keselman, Carriere,
and Lix (1993) for repeated measures main effects in unequal n split-plot
designs. The latter authors found...that, for normally distributed data, the
number of subjects in the smallest of the unequal groups should be 2 to 3 times the
number of repeated measurements minus one in order to achieve reasonable Type
I error protection. (p. 311)

Tukey and Welsch. The T and W procedures yielded very similar results. In
Table 2 both procedures yielded empirical error rates within Bradley’s stringent
confidence bounds only when sphericity was equal to one (¢ = 1.00). Both
procedures were too liberal (& > .06) when sphericity was less than one, having
higher &’s as sphericity decreased.

Keppel and Dunn-Bonferroni. In Table 2, the K procedure yielded a’s that
became too liberal (& > .06) as the number of measures increased and as the
measure of sphericity increased. The DB procedure yielded error rates that
averaged .04, and that dropped below .04 at levels of sphericity that were close to
our minimum values.
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Table 2
Empirical Type I Error Rates (&) for the Full Null Hypothesis.

Welch-James Tukey Dunn-
J n € Wilks Johansen WSD Keppel Welsch Bonferroni
3 15 .51 0490 0500 0854* 0408 0788* 0356**
.15 0532 0542 0686* 0476 0654* 0394**
1.00 0496 0504 0496 0492 0514 0414
4 15 .40 0552 0598 0994* 0504 1028* 0382**
.50 0482 0540 0822* 0532 0928* 0396**
.75 0520 0542 0658* 0588 0722* 0440
1.00 0466 0530 0460 0602* 0508 0464
5 15 .30 0462 0592 1178* 0552 1188* 0370**
.50 0540 0662* 0980*  0606* 0948* 0404
75 0488 0604* 0680*  0660* 0698* 0436
1.00 0474 0600 0460 0672* 0532 0454
6 15 .30 0508 0748* 1204* 0554 1270* 0328**
.50 0456 0666* 0946* 0596 0970* 0352**
75 0590 0838* 0698*  0628* 0734* 0384**
1.00 0494 0704* 0482 0646* 0482 0380**
8 15 .20 0520 1272* 1542* 0594 1622* 0324**
.50 0486 1252* 1100*  0644* 1088* 0356**
.75 0514 1262* 0762*  0676* 0764* 0380**
1.00 0470 1168* 0458 0712* 0496 0398**
10 15 .20 0456 2092* 1852*  0730* 1940* 0398**
.50 0544 2346* 1136* 0776* 1210* 0428
.75 0482 2160* 0902* 0776* 0826* 0436
1.00 0526 2212* 0542 0832* 0534 0442

Note. An * indicates that the empirical error rate was greater than Bradley’s
upper confidence value of .06, and an ** indicates that the empirical error rate
was less than Bradley’s lower confidence value of .04.
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Sample Size For Power Of .80

P-MCPs not considered. As a result of the liberal &'s values found under
normality for WJJ, T, and W, these procedures were not considered further in
our sample size calculations. This caused the SB, FH, SRW, MRW, and P
procedures to also be eliminated because they are dependent on the overall WdJdJ
and K tests.

P-MCPs considered. We decided to investigate sample size for power of ~.80
for the DB procedure because it controlled & below, but close to, Bradley’s lower
limit. We also decided to reconsider Type I error for the K procedure because its
error rate seemed to be related to the unit/measure (n/J) ratio, and because the
&'s reported in Table 2 where within Bradley’s liberal criterion of robustness
(ie., .025 < & < .075 for o = .05) for all values except those with J = 10 and ¢ >
.20. We considered both K’s and DB’s Type I error rate under both normality
and nonnormality, using the sample size n~.80 for the DB procedure. This
process was used because if the n~.80 needed for DB to have power of ~.80 did
not control Type I error for K, the DB procedure would be a better choice.

Sample size results. The results for the latter analyses are shown in Table 3.
In Table 3 the sample sizes needed for power of the DB procedure to reach ~.80
under normality are the same in most cases as the n’s found under the
nonnormal situation, requiring an additional unit for J=4, ¢ = .40. For these
sample sizes the Type I error shown in Table 3 was similar to that found with 15
cases in Table 2 under normality, but is more conservative (approximately .02)
for the nonnormal cases. The K procedure was too liberal (& > .06) for several
cases when the n/J ratio was less than 3 and ¢ approached 1.0. The K procedure
was conservative, with & approximately equal to .04 under nonnormality.

Discussion

This study was an exploratory look at P-MCPs that had been found to control
familywise Type I error in more complex designs, and therefore, were expected to
also be similarly effective in the simpler single group repeated measures design.
This was not found to be true. The results indicated that all of the new methods
could not be recommended for use with single group repeated measures designs
because their omnibus tests failed to adequately control Type I error. One reason
for this may be that in the single group design the adjusted degrees of freedom
(SDF) reduce to n-1 and do not involve the treatment variances as is true in
more complex designs. However, a familiar and easy to calculate method, the
Dunn-Bonferroni procedure, did successfully control familywise Type I error and
may be recommended for use as a follow-up procedure with single group repeated
measures designs.

()
=4
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Table 3
Sample Size (n~.80) for Power of ~.80 with the Dunn-Bonferroni Procedure and
Empirical Type I Error Rates (Full Hypothesis) for DB and K Given This Sample Size.

Normality Nonnormality
__Typel Error Type I Error
J € n~.80 Power DB K n~.80 Power DB K
~.80 . ~.80
3 51 32 7748 _* _ _
33 8048 0314** 0366** - _ _ -
.75 8 7684 8 7782
9 8574 0440 0544 9 8410 0260** 0380**
1.00 8 7476 8 7622 .
9 8402 0452 0578 9 8288 0268** 0364**
4 40 8 6960 9 7946
9 8023 0392** 0566 10 8482 0280** 0414
.50 9 7598 9 7668
10 8356 0432 0586 10 8222 0242** 0374**
.75 9 7372 9 7474
10 8140 0480 0630* 10 8058 0212** 0350**
1.00 9 7298 9 7432
10 8090 0482 0684* 10 8018 0199** 0324**
5 .30 10 7946 10 7908
11 8648 0348** 0556 11 8396 0368** 0368**
.50 10 7420 10 7532
11 8206 0370** 0596 11 8026 0240** 0342**
.75 10 7304 11 7932
11 8114 0399** 0620* 12 8402 0186** 0380**
1.00 10 7264 11 7890
11 8058 0432 0680* 12 8356 0194** 0368**
6 .30 11 7744 11 7696
12 8448 0358** 0588 12 8316 0256** 0440
.50 11 7568 11 7606
12 8314 0368** 0638* 12 8184 0240** 0380**
.75 11 7512 11 7560
12 8258 0386** 0654* 12 8150 0344** 0046
1.00 11 7512 11 7560
12 8258 0418 0680* 12 8150 0170** 0340**
8 .20 12 7760 12 7740
13 8416 0320** 0618* 13 8244 0240** 0402
.50 12 7512 12 7522
13 8202 0354** 0672* 13 8088 0156** 0368**
.75 12 7518 12 7476
13 8202 0374** 0696* 13 8056 0148** 0340**
1.00 12 7470 12 7476
13 8148 0392** 0734* 13 8056 0142** 0330**
10 .20 13 7480 13 7548
14 8218 0354** 0764* 14 8046 0224** 0428
.50 13 7410 13 7492
14 8148 0388** 0808* 14 8004 0172** 0384**
.75 13 7362 14 7958
14 8078 0390** 0834* 15 8394 0154** 0386**
1.00 13 7362 14 7960
14 8078 0406 0868* 15 8394 0132** 0370**

Note. The notation “n~.80" indicates the sample size necessary for a P-MCP to come as close to power of .80
as possible without becoming less than .80. The actual power for n~.80 is denoted by ~.80. An * indicates
that the empirical error rate was greater than Bradley’s upper confidence value of .06, and an ** indicates
that the empirical error rate was less than Bradley's lower confidence value of .04.

4The variance covariance was singular under nonnormality. BEST @@EFY F*W ’Am”ﬁguﬂb
Q ’
12
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Study 2

Introduction / Perspectives

Based on the results of Study 1, Study 2 was planned to examine the P-MCPs
DB, K, and WJJ with the inclusion of the Roy-Bose simultaneous confidence
intervals, R-B, (Roy and Bose, 1953) and the Studentized maximum modulus
statistic recommended by Alberton and Hochberg (1984). The K and WddJ P-
MCPs were included because they could prove effective in controlling FWE under
conditions of nonnormality. Maxwell (1980) found the R-B P-MCPs to yield too
conservative estimates of familywise error and power less than the DB
procedure. This procedure was included here because Maxwell did not compare
n’s among procedures for power at ~.80, and it was thought that the conservative
R-B might be effective in controlling FWE with nonnormal data. The
Studentized maximum modulus statistic (referred to here as A-H for Alberton
and Hochberg) was included because it yields critical values that fall between
the DB ¢t statistic and the K g statistic. If the Studentized maximum modulus
statistic proved to be successful, it could be studied as the test statistic with the
SB, FH, SRW, MRW, and P procedures. Also, in Study 2 power was studied
using real data which provided a wide variety of mean patterns and variance-
covariance structures. This was done because past studies of one-way fixed
effects designs (e.g., Klockars and Hancock, 1992; Seaman, Levin, and Serlin,
1991) had indicated that different P-MCPs were more powerful with different
mean patterns. It was felt that these power differences among P-MCPs would
probably be exacerbated given the different variance-covariance structures found
in repeated measures designs.

Method

Data and Calculations

Data sources. One hundred real data sets described in Green and Barcikowski
(1992) and in Robey and Barcikowski (1995) were used to consider the
familywise error and power of the R-B, DB, A-H, and K pairwise multiple
comparison procedures and the WJJ omnibus test. The primary sources of data
were the American Educational Research Journal, the Journal of Consulting and
Clinical Psychology, the Journal of Speech and Hearing Research, and
Psychophysiology. Additionally, other studies were collected from published
books, dissertations, non-published works and/or articles under submission, and
paper presentations.

Effect size . The DB effect size (DB-ES) for each study was found using the
equation (Barcikowski and Robey, 1985):

(Y- %)
2(s? - 8% - %) 73

DB-ES = (6)
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The maximum DB-ESs from each study were used for descriptive and predictive
purposes in Study 2.

Power. Using the MC methods for Study 1, sample size for power ~.80 was
found for each study based on the largest test parameter (TS;) of each P-MCP in
the study. For example, if the A-H MCP was being considered for a given study,
the study’s variance-covariance matrix and means were considered to be
population values. The pair of means that had the largest A-H test parameter in
the population was found, and the sample size n~.80 was then found. This
sample size was then used to examine control of Type I error for the R-B, DB, A-
H, and K P-MCPs using the MC procedures from Study 1 to create normal and
nonnormal data.

Very stringent criterion. An arbitrary decision was made (because we were
not satisfied with an upper bound of .06) to use the one-tailed criterion of a <
.055 for determining if a P-MCP yielded adequate estimates of .. For those

_studies where familywise error was not controlled, (ie., a > .055), sample size

was increased until an n was found which also found & < .055.

Equation 5 for A-H and R-B SCI. For A-H, CON =1 and CVij,,v =

m_kn-1, Where m, x n.1 is the Studentized maximum modulus statistic and Dfl = k .
= J(J-1)/2. Values of m_kn-1 were found using FORTRAN algorithms developed
by Stoline, Vidmar, Sheh, and Ury (1977). For R-B, v is a value other than n-1
and is found to be v = n-J+1, Dfl = J-1, CVjj v = VF/-1.»-s+1 , and CON = (n-1)(J-1)
/Nn=J+1.

Preliminary Analyses

Prior to considering the P-MCPs with the real data sets, the A-H procedure was
considered for the data sets provided by Maxwell (1980) and for the data sets
from Study 1, shown in Table 2. The results showed great promise for the A-H
MCP. For Maxwell’s data sets, J = 3, 4, 5; using his sample sizes of 15 and 8, the
range of familywise error estimates was from .037 to .059, all within Bradley’s
stringent criterion. For the data sets from Study 1, the range of estimated
familywise error was from .037 to .054, again, all within Bradley’s stringent
criterion.

Results

Descriptive Statistics From The Studies

Sphericity and repeated measures. Descriptive information for the one-
hundred studies is provided in Figures 1, and 3 for values of sphericity. In
Figure 1 the sphericity values follow a nearly normal distribution with a mean of
69 and a standard deviation of .20. Huynh and Feldt (1986) indicated that most
values of sphericity would be greater than or equal to .75. However, in Figure 1

4
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fifty-nine percent of the studies had values of sphericity less than .75. Figure 2
contains box-whisker plots of the values of sphericity by the number of repeated
measures. In this figure it can be seen that one is more likely to obtain a value
of sphericity less than .75 as the number of repeated measures increases. This is
reasonable because the lower bound (1/(J-1)) of the sphericity values becomes
smaller as the number of repeated measures increases. The x-axis in Figures 2
provides information on the number of studies found with a given number of
repeated measures (J). The largest number of studies (43) had J = 3, 26 had J =
4,12 had J =5, 8 had J = 6, etc.. The largest number of repeated measures
found among the studies was eleven, found in only one study.

Dunn-Bonferroni effect sizes. The DB effect sizes from the studies are shown
in Figures 1 and 3. In Figure 1 the effect sizes were found to be positively
skewed with a median of .72, and with 66 studies having an effect size between
.01 and .98. The effect sizes found in the 34 remaining studies ranged from a
very large effect size of 1.01 to a huge effect size of 7.85. The box-whisker plots
in Figure 3 indicated no relationship between DB effect size and number of
repeated measures.

values of Sphericity for All Studies

Frequency Stem & Leaf
18.00 0 * 333444444
50.00 0 55555555566666666777777777
30.00 0 * 888888999999999
2.00 1 0
Stem width: 1.00
Each leaf: 2 case(s)
Min .21, Max 1.00

Underlined '7' is the beginning of values > .75

Effect Size Parameters for All Studies

Frequency Stem & Leaf
66.00 o . 011222233334444455555666777788889
24.00 1 . 01112333456
3.00 2 . 3&
7.00 Extremes (2.8), (2.8), (3.3), (7.4), (7.9)
Stem width: 1.0000
Each leaf: 2 case(s)

& denotes a single case
Extremes in bold represent 2 cases
Min . 0145, Max 7.8507

F l{llC Figure 1. Stem-and-leaf displays of sphericity and Dunn-Bonferroni effect sizes across all studies. The
S DB effect sizes were found for the mean differences with the largest #test parameter in each study.

.7 =
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1.2
1.0 §
81
61 . i S
4 .
2 9
g
g 0.0 - - - . - - - . -
N= 43 26 12 8 2 4 2 2 1
3 4 5 6 7 8 9 10 1

Number of Repeated Measﬁres

Figure 2. Box-whisker plots of sphericity by number of repeated measures across all studies.

10

O« Ces

Dunn-Bonferroni (DB) Effect Size
[N o

N= 43 26 12 8 2 4 2 2 1
3 4 5 6 7 8 9 10 1

Number of Repeated Measures

Figure 3. Box-whisker plots of Dunn-Bonferroni effect sizes (DB-ES) by number of repeated measures
across all studies.
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Figure 4. Scatter plot for normal data of n~.80 sample size differences by ~.80 power differences
for Roy-Bose minus Dunn-Bonferroni P-MCPs. Frequencies (heights) of the sample size
differences are shown below the x-axis. The coordinates of five sample size differences with values
greater than 20 were deleted to improve this figure, they were: (25, -01), (27, -.01), (34, 0.0),

(38, -.01), (40, -.01). Two studies were not included because their sample sizes were so large as to
make MC work difficult.

Welsch-James-Johansen (WJJ)

Results for WJJ are not given in the following sections on normal and nonnormal
data because the method provided results that showed it to have poorer control
of familywise error than the other methods with results slightly poorer than the
K MCP. WJJ is considered in the section on prediction of familywise error.

Normal Data: Power and Sample Size Differences

Roy-Bose versus Dunn-Bonferroni. Figure 4 displays a scatter plot of the
differences in the sample sizes n~.80 by the differences in the corresponding
power values (~.80) for the R-B minus DB MCPs. The results indicated (as they
should) that the DB MCP required either the same or smaller sample sizes in all
cases, and that 64 of the cases differed by sample sizes of 3 or less; with 87 of the
cases differing by 10 or less cases. The most extreme case differed by 40 sample
size units with an R-B n~.80 of 377 and a DB n~.80 of 337. For those cases
where the difference in sample size was zero, the power of the DB MCP was
greater than the power of the R-B MCP. In Figure 4, the power differences for
the four points shown at R-B minus DB = 0 sample size difference had the

1%
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following (sample sizes and R-B, DB power): (n~.80 = 12; .82, .85), (n~.80 = 9;
.80, .86), (n~.80 = 6; .82, .92), (n~.80 = 6; .80, .91). Those cases with positive
power differences indicated that the greater sample size required by the R-B
MCP would also yield greater power. For example, at R-B minus DB =2 in
Figure 4, the largest power difference was .10 which occurred when the sample
size for R-B was 6 (power = .91) and the sample size for DB was 4 (power = .81).
In general, for larger sample sizes, differences in power were smaller and closer
to .80. For example, consider the following largest sample sizes for each n~.80
difference ranging from 1 to 7, and their respective powers (R-B n~.80 - DB
n~.80;. R-B power ~.80 - DB power ~.80): (106 - 105 = 1; .80 - .81), (69 - 67 = 2;
.80 - .81), (143 - 140 = 3; .81 - .80), (64 - 60 = 4; .81 - .80), (439 - 434 =5; .80 - 81),
(67 - 60 = 6; .80 - .81). Also, in general the largest power differences came from
small sample sizes. For example, the power differences shown in Figure 4 that
are greater than .05 are all based on sample sizes of 10 or less.

Dunn-Bonferroni versus Alberton-Hochberg. Figure 5 displays a scatter
plot of the differences in the n~.80 sample sizes by the differences in the
corresponding power values (~.80) for the DB minus A-H MCPs. The n~.80
sample sizes are nearly identical for these two P-MCPs. The single largest n~.80
difference was 4 units; 63 cases had no difference, 26 cases differed by 1 unit,
and 2 cases differed by 2 units. Indeed, the five units with negative differences,
ie., with smaller sample sizes for the DB procedure, represent errors in the MC
procedure due to the closeness of the actual sample sizes. The ~.80 power
advantage was in favor of the A-H P-MCP (as it should) when the n~.80
difference between the two procedures was zero. The largest three power
differences at the n~.80 difference of O were -.14, -.10, and -.06, with all other
differences less than -.05 (e.g., 12 differences at -.02, 15 differences at -.01, and
14 differences at .00). At the n~.80 difference of 0 there were eight ~.80 power
differences at .01, favoring the DB MCP, which again represented errors in the
MC procedure due to the closeness of the actual power values.

Alberton-Hochberg versus Keppel. Figure 6 displays a scatter plot of the
differences in the n~.80 sample sizes by the differences in the corresponding ~.80
power values for the A-H minus K MCPs. The n~.80 sample size differences are
very small for the A-H and K MCPs with 85 cases having differences between 0
and 2 and 7 cases less than a difference of 6. When the n~.80 sample size
difference was 0 the power differences favored the K MCP with the single largest
~.80 power difference of -.06. Given one additional case, a n~.80 difference of 1,
the A-H MCP generally had larger power values with three cases showing power
differences of .09.

is8
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Figure 5. Scatter plot for normal data of n~.80 sample size differences by ~.80 power differences for
Dunn Bonferroni minus Alberton-Hochberg P-MCPs. Two studies were not included because their
sample sizes were so large as to make MC work difficult.

Sample Size with FWE < .055

In Study 1 it was observed that the K’s and WJJ’s Type I error was reduced with
larger sample sizes. This process of considering larger sample sizes was tried
with those studies whose FWE was found to be > .055 for the A-H and K P-
MCPs. For the latter studies sample size was increased until estimated FWE
was less than .055. The results indicated that of the twelve A-H FWE’s whose
values were greater than .055, nine required increased sample sizes that were
larger than n~.80 DB, two had one unit less than n~.80 DB, and one had the
same size as n~.80 DB. For the K FWE forty-five studies yielded FWE > .055.
Of these, only seven had increased sample sizes that were slightly less than
n~.80 DB.

Normal Data: Estimated Familywise Error

Roy-Bose. Values of familywise error were not presented because they are all
known to be less than those for DB (e.g., Maxwell, 1980).

Dunn-Bonferroni. Figure 7 displays a scatter plot of the estimated familywise
error by number of repeated measures based on n~.80 sample sizes for DB
MCPs. The results indicated that the DB familywise errors were all less than
.05 for normally distributed data.
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Alberton-Hochberg. Figure 8 displays a scatter plot of the estimated
familywise error by number of repeated measures based on n~.80 sample sizes
for A-H MCPs. Twelve of the one-hundred cases yielded &’s that were greater
than .055. The range of &’s for the other cases was between .055 and .029. On
observing the 12 studies whose &’s were > .055 it was found that all occurred
when n~.80/ J (n to J ratio) was less than 2. However when N~.80 was increase
so that & < .055 for A-H, the n~.80 for DB provided a smaller sample size.

Keppel. Figure 9 displays a scatter plot of the estimated familywise error by
number of repeated measures based on n~.80 sample sizes for K MCPs. Forty-
five of the one-hundred cases had &’s that were greater than .055. The number
of cases whose &’s were greater than .055 by number of repeated measures was:
(J = 3; 17/43 or 40 %), (J = 4, 13/26 or 50%), (J = 5, 7/12 or 58%) (J = 6, 0/8 or
0%), (J > 6, 8/11 or 73%).
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Figure 6. Scatter plot for normal data of n~.80 sample size differences by ~.80 power differences for
Alberton-Hochberg minus Keppel P-MCPs. Eight studies were not included because of their sample
sizes exceeded our program's limit of v = 120 for accurately computing critical values of K.

Normal Data: Prediction of Estimated Familywise Error (FWE)

Prediction using DB-ES and sphericity. In preparing the latter figures it
was noticed that there appeared to be a relationship between the Dunn-
Bonferroni effect size, DB-ES, sphericity and the estimated familywise errors of
the testing procedures. In regressing the familywise error rates on DB-ES and

~N
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within each number of repeated measures (J) that prediction was best handled
with J held constant. The results of these regressions of the familywise error
rates for WWJ, K, A-H, and DB are shown in Table 4 for the values of J where
the number of studies was relatively large, i.e., at J =3, 4, 5, and 6. The
multiple correlations (R) shown in Table 4 indicated that at each level of J DB-
ES and ¢ provided very good estimates of familywise error for the WJJ, K and A-
H procedures and good estimates for the DB P-MCP. For all cases the
distributions of the errors of prediction were positively skewed so that most of
the errors were small with the larger errors occurring with large values of FWE.
For example, the maximum error for WJJ at J = 4 was .0760, but this was for a
FWE of .2810 whose predicted value was .2048. In the latter case, the majority
of errors were values less than the absolute value of .0070.
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Fiqure 7. Scatter plot for normal data of repeated measures by estimated familywise error for the Dunn
Bonferroni P-MCP, given a sample size which yields power of not less than .80.
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Figure 9. Scatter plot for normal data of repeated measures by estimated familywise error for the
Keppel P-MCP, given a sample size which yields power of not less than .80.
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Table 4

Regression Statistics Found in Using Dunn-Bonferroni Effect Size and
Sphericity () to Predict the Estimated Level of Significance for
Different Paired Comparison Test Statistics, Given Different Numbers
of Repeated Measures and Normally Distributed Data.

Dependent Regression Coefficients® Std Error  _Abs. Exrors
Variable bo ES £ R (R?» of Estimate Min Max
Est. FWE
J=3, n=43
WdJdd .043 018 NI .981(.962) .0045 .0004 .0130
Keppel .036 .048 .018 .817(.667) .0040 .0001 .0100
A-H .023 .0047 023 .831(.690) .0038 .0005 .0100
DB .024 .0017 021 .752(.565) .0027 .0001 .0072
Jd=4, n=26
WdJdd -.021 .064 049 .976(.952) .0220 .0008 .0760
Keppel .030 .0064 029 .768(.591) 0077 0005 .0210
A-H 022 .0059 022 .815(.664) .0060 0002 .0150
DB 023 0014 018 .649(.421) .0037 0002 .0100
Jd=5 n=12
WdJdd -.069 .122 073 .966(.934) 0270 .0016 .0410
Keppel 018 .024 030 .957(916) .0055 .0005 .0080
A-H 015 013 023 .916(.840) .0042 .0004 .0089
DB .019 .0039 019 .659(.434) .0033 0002 .0066
J=6,n=8
WJdJ .043 .029 -.006 .926(.857) 0019 0001 .0023
Keppel .025 026 014 .869(.756) 0025 .0009 .0033
A-H .032 .0089 013 .836(.698) .0020 .0005 .0026
DB .033 -014 012 .832(.693) .0023 .0001 .0033

Note. Estimated familywise error for each MCP was regressed on DB-ES and
sphericity for each value of J, the number of repeated measures, with n
representing the number of studies included in the regression analysis. The
multiple correlation is denoted by R and the absolute values of the minimum and
maximum error are shown following the standard error of estimate.
sThe regression coefficients are unstandardized where: bo is the constant term,
ES denotes the regression coefficient for DB-ES, and € denotes the regression
coefficient for the population measure of sphericity.
NI (not in) indicates that the independent variable was not used in the
regression equation.
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Nonnormal Data: Power, Sample Size and Estimated Familywise Error

Sample size, power and estimated FWE. As in Study 1, the n~.80 sample
size and ~.80 power values found for each study under normality were
approximately the same under nonnormality. What was of interest, however,
was that these same sample sizes now yielded a higher percentage of estimated
FWE’s that were greater than or equal to .055. The R-B and DB P-MCPs went
from having no values of estimated FWE greater > .055 to having 11% and 37%,
respectively. The A-H and K P-MCPs increased from 12% and 45% to 41% and
65%, respectively.

Roy Bose Versus Dunn-Bonferroni. In Figure 10 is a modified stem-and-leaf
display that illustrates the differences between the R-B minus DB sample sizes
were the n’s satisfy both the criteria of yielding power > .80 and estimated FWE
<.055. The 30 differences that are negative indicate that the R-B MCP yielded
smaller sample sizes. The DB n’s in these 30 differences were increased n’s (over
n~.80) necessary to have FWE < .055. Since some of the R-B n~.80 also had to
be increased to meet the < .055 criterion, the differences indicated that these

.values did not have to be increased as high as the DB n’s. This pattern was the
same across all P-MCP sample sizes. That is, whenever a given P-MCP required
that its n~.80 be increased, the increase was always in the following order: K >
A-H > DB > R-B. In Table 5 are the first ten and last ten differences from the
stem-and-leaf plot in Figure 10. In the first case in this table the R-B n~.80 was -
6 and the DB n~.80 was 5, but these sample sizes yielded estimated FWE's of
.0778 and .1086, respectively. To bring the estimated FWE to be less than .055
these two n~.80’s had to be increased to 28 and 133 respectively. The last ten
values in Table 5 did not have to be increased because their n~.80’s yielded
estimated FWE'’s that were all less than .055.

Frequency Stem & Leaf
8.00 Extremes (-105), (-86), (-78), (-67), (-63), (-56), (-53)
22.00 -0 * 01111223334
44.00 0 * 001111111122333345679
3.00 1. 1s&
4.00 Extremes (37), (48), (50)
Stem width not in bold: 100
Stem width in bold: 10
Each leaf: 2 case(s)
& represents a single case
Extremes in bold represent two cases

Figure 10. Modified stem-and-leaf display, based on statistics from nonnormal data, of sample size
differences for Roy-Bose minus Dunn Bonferroni P-MCPs. Sample size was determined for power not
less than .80, and familywise error less than .055.

24



Repeated Measures: Paired Comparisons
24

Designs with small n’s. Several of the nonnormal 30 cases where R-B
provided a smaller sample size (given the criteria) than did DB, had small n to J
ratios. For example, consider the three studies which required an R-B sample
size of 5, 5, and 7 in Table 5, compared to the DB sample sizes of 61, 61, and 60,
respectively. Although no relationship was found between RB FWE and these
variables, it is interesting to note that in these designs with small n’s that the
conservative R-B MCP can be recommended for use.

Table 5

Examples of Studies (First 10 and Last 10 from Figure 10) with
Nonnormal Data Where the Roy-Bose P-MCP Requires Smaller and
Larger Sample Sizes Than the Dunn-Bonferroni P-MCP.

n for Power > .80 n for &'ﬁ .05
Effect R-B DR n R-B - DB
J € Size Qa n~.80 Qa n~.80 R-B DB Difference
Values Where R-B Requires A Smaller n
3 .97 1.58 .0778 6 .1086 5 28 133 -105
3 .77 .42 .0640 28 .0758 27 41 127 -86
3 .88 .83 .0734 10 .0962 9 27 105 -78
5 .79 .49 .0396 33 .0830 27 33 100 -67
3 .68 .42 .0612 30 . 0650 28 28 91 -63
3 .69 2.34 .0520 5 .0908 4 5 61 -56
3 .89 2.80 .0470 5 .0758 4 5 61 -56
3 .98 1.37 .0498 7 .0728 6 7 60 -53
3 .91 1.90 .0734 5 .1188 5 30 79 -49
3 .73 1.55 .0638 6 .0980 5 21 65 -44
Values Where DB Requires A Smaller n

10 .58 2.85 .0000 14 .0166 6 14 6 8
5 .72 .38 .0176 55 . 0446 46 55 46 9
8 .56 .83 .0038 25 . 0490 16 25 16 9
6 .33 .45 .0114 46 .0478 35 46 35 11
9 .54 .76 .0016 30 .0320 19 30 19 11
6 .48 .41 .0106 63 .0356 51 63 51 12
3 .91 .08 .0346 785 .0414 748 785 748 37
7 .74 .24 .0044 174 . 0306 137 174 137 37
5 .98 .14 .0166 382 .0338 334 382 334 48
4 .71 .14 .0232 347 .0388 297 347 297 50

Note. J = number of repeated measures, ¢ = population measure of sphericity,
effect size (DB-ES) is for DB ¢, n = sample size, & = the estimated familywise
error rate for a given n.

Conclusions EST Choi sowoae

Tests Not Recommended

Based on the results of Study 1 (given normal data) the stepwise tests SB, FH,
SRW, MRW, and P could not be recommended for use because of the failure of
EMC their possible omnibus test, WJJ, to adequately control FWE. Similarly, the T
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and W procedures failed to control FWE (given normal data) and can not be
recommended for use.

Tests Recommended

The results of Studies 1 and 2, given normal data, indicated that the DB P-MCP
can be recommended for use with single group repeated measures data. This is
because DB P-MCP was able to control FWE and because its n~.80 sample sizes
were all very close to the sizes of the slightly more powerful A-H P-MCP. For
nonnormal data one must take into account the power-FWE criterion that
sample size should be such that power be ~.80 and that FWE should be <.055 or
.06. Based on these criteria the R-B P-MCP is recommended for use because it
requires n~.80 that are generally close to the n~.80 required for DB when the
DB procedure also meets the criteria, but generally requires smaller sample
sizes than the DB P-MCP when the DB procedure fails to meet the criteria.

Tests Recommended Given Conditions

The A-H P-MCP can be recommended for use, given normal data, when the ratio
of sample size to number of repeated measures is > 2 (i.e., (n~.80/J) > 2). Given
the latter condition, the n~.80 sample size of A-H was smaller than or equal to
that found for DB and the A-H provides slightly better power. Given either
normal or nonnormal data, there are data situations where one of the K, A-H,
DB, or R-B P-MCPs best meets the power-FWE criterion in the sense of
providing the smallest n~.80. For example, the K MCP required the smallest
n~.80 for a nonnormal data set where the sample sizes for the MCPs were K
(17), A-H (19), DB(19), R-B (30). Similarly, for another nonnormal data set, A-H
provided the smallest n~.80 with o <.055 or .06 and sample sizes: K(21), A-H
(19), DB(20), R-B (20). For DB a study was found with n~.80 of K(41), A-H (26),
DB(16), R-B (25). Given normal data, one could use the regression equations
provided in Table 4 to predict FWE across P-MCPs for a given n~.80, and use the
power-FWE criterion to select the best P-MCP.

Monte Carlo (MC) investigations. Another approach to finding the best
(smallest n~.80 which yields a < .055 or .06) P-MCP to use for a given repeated
measures data set is to conduct a MC investigation. This approach is certainly
within the scope of many investigators due to the current speeds of computers.
For example, all of the results provided by Maxwell (1980) were replicated in two
hours, and the MCPs considered in Study 2 could be replicated within five
minutes for a single data set with an effect size > .10 on most Pentium
computers.

Recommendations for Practitioners

Recently, a large number of pairwise multiple comparison procedures were
introduced to the educational research community. This study considered the
use of some of the more robust of these new methods with a single group
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repeated measures design over a range of nonsphericity values, given normal
and nonnormal data. The results indicated that all of the new methods could not
be recommended for use with single group repeated measures designs because
they or their omnibus tests failed to adequately control Type I error. However,
given normal data, a familiar and easy to calculate method, the Dunn-
Bonferroni procedure, did successfully control familywise Type I error and may
be recommended for use as a follow-up procedure with single group repeated
measures designs. Also, given nonnormal data, the relatively easy to calculate
Roy-Bose simultaneous confidence procedure is recommended for use in testing
pairwise multiple comparisons in single group repeated measures data.
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